IQ Switch® ProxFusion[™] Series

IQS620 Datasheet

Combination sensor with dual channel capacitive proximity/touch, Hall-effect sensor and inductive sensing

The IQS620 ProxFusion™ IC is a multifunctional capacitive, Hall-effect & inductive sensor designed for applications where any or all of the technologies may be required. The IQS620 is an ultra-low power solution designed for short or long term activations through any of the sensing channels. The IQS620 is fully I²C compatible and can be configured to output main trigger events on GPIOs.

Features

- Unique combination of sensing technologies:
 - Capacitive sensing
 - Hall-effect sensing
 - Inductive sensing
- Capacitive sensing
 - 2pF to 200pF external capacitive load capability
 - Fully adjustable sensing options
- Hall-effect sensing
 - No external components required
 - Dual direction Hall switch sensor
 - 2 level detection (widely variable)
 - Detection range 1mT 100mT
- Inductive sensing
 - Metal sensing UI with 2 level detection and hysteresis
 - Only external sense coil required (PCB
- Low power consumption: 300uA (50 Hz response, all technologies in use), 2.5uA (low power mode, zoom to scanning mode with wake-up)

- Multiple integrated UI options based on years experience sensing on fixed and mobile platforms:
 - Proximity / Touch
 - Proximity wake-up
 - SAR with movement and quick release

- Automatic Tuning Implementation (ATI) performance enhancement (10bit)
- Minimal external components
- Standard I²C interface (polling with sub 1ms clock stretching)
- Optional RDY indication for event mode operation
- **Event or Streaming mode**
- Supply voltage: 1.8V to 3.3V
- Low profile DFN(3x3) 10 pin package

Applications

- Mobile electronics (phones/tablets)
- SAR safety requirements for laptops, tablets and phones
- Wearable devices
- White goods and appliances

- **Human Interface Devices**
- Proximity activated backlighting
- Applications with long-term activation
- Aftermarket automotive¹

Available Packages					
T _A	DFN(3x3) - 10				
-40°C to 85°C	IQS620				

¹ The part is not automotive qualified.

Table of Contents

LI	ST OF A	ABBREVIATIONS	4
1	INT	FRODUCTION	5
	1.1	ProxFusion™	5
	1.2	PACKAGING AND PIN-OUT	5
	1.3	REFERENCE SCHEMATIC	6
	1.4	SENSOR CHANNEL COMBINATIONS	6
2	CAF	PACITIVE SENSING	7
	2.1	Introduction to ProxSense®	7
	2.2	CHANNEL SPECIFICATIONS	
	2.3	HARDWARE CONFIGURATION	8
	2.4	SOFTWARE CONFIGURATION	g
	2.5	SENSOR DATA OUTPUT AND FLAGS	g
3	HAI	LL-EFFECT SENSING	10
	3.1	INTRODUCTION TO HALL-EFFECT SENSING	10
	3.2	CHANNEL SPECIFICATIONS	
	3.3	HARDWARE CONFIGURATION	
	3.4	SOFTWARE CONFIGURATION	12
	3.5	SENSOR DATA OUTPUT AND FLAGS	13
4	IND	DUCTIVE SENSING	14
	4.1	Introduction to inductive sensing	14
	4.2	CHANNEL SPECIFICATIONS	14
	4.3	HARDWARE CONFIGURATION	15
	4.4	SOFTWARE CONFIGURATION	15
	4.5	SENSOR DATA OUTPUT AND FLAGS	16
5	TEN	MPERATURE SENSING	17
	5.1	INTRODUCTION TO TEMPERATURE SENSING	17
	5.2	CHANNEL SPECIFICATIONS	17
	5.3	HARDWARE CONFIGURATION	18
	5.4	SOFTWARE CONFIGURATION	18
	5.5	SENSOR DATA OUTPUT AND FLAGS	19
6	DE\	VICE CLOCK, POWER MANAGEMENT AND MODE OPERATION	20
	6.1	DEVICE MAIN OSCILLATOR	
	6.2	DEVICE MODES	20
	6.3	REPORT RATES	21
	6.4	System reset	21
7	COI	MMUNICATION	22
	7.1	I ² C MODULE SPECIFICATION	22
	7.2	DEVICE ADDRESS AND SUB-ADDRESSES	
	7.3	Additional OTP options	22
	7.4	RECOMMENDED COMMUNICATION AND RUNTIME FLOW DIAGRAM	
8	ME	EMORY MAP	24
	8.2	Device Information Data	24
	8.3	FLAGS AND USER INTERFACE DATA	
	8.4	CHANNEL COUNTS (RAW DATA)	
	8.5	LTA VALUES (FILTERED DATA)	
	8.6	PROXFUSION SENSOR SETTINGS BLOCK 0	
	8.7	PROXFUSION SENSOR SETTINGS BLOCK 1	
	· · ·		

without any warranty and are subject to change without notice.

8.8	ProxFusion UI settings	40
8.9	SAR UI SETTINGS	41
8.10	METAL DETECTION UI SETTINGS	43
8.11	HALL-EFFECT SENSOR SETTINGS	45
8.12	HALL-EFFECT SWITCH UI SETTINGS	47
8.13	TEMPERATURE UI SETTINGS	48
8.14	DEVICE AND POWER MODE SETTINGS	50
9 ELE	ECTRICAL CHARACTERISTICS	54
9.1	Absolute Maximum Specifications	54
9.2	Power On-reset/Brown out	54
9.3	DIGITAL INPUT/OUTPUT TRIGGER LEVELS	54
9.4	CURRENT CONSUMPTIONS	55
9.5	CAPACITIVE LOADING LIMITS	57
9.6	Hall-effect measurement limits	57
9.7	INDUCTIVE MEASUREMENT LIMITS	57
10 PA	ACKAGE INFORMATION	58
10.1	DFN10 PACKAGE AND FOOTPRINT SPECIFICATIONS	58
10.2	DEVICE MARKING (SUBJECTED TO CHANGE FOR PRODUCTION)	59
10.3	Ordering Information	59
10.4	TAPE AND REEL SPECIFICATION	60
10.5	MSL Level	61
11 DA	ATASHEET REVISIONS	62
11.1	REVISION HISTORY	62
11.2	ERRATA	62
ADDENID	DIV A CONTACT INFORMATION	63

List of abbreviations

ATI – Automatic Tuning Implementation

LTA - Long term average

SAR - Specific absorption rate

UI - User interface

AC - Alternating current

DSP - Digital signal processing

RX - Receiving electrode

LTX – Inductive transmitting electrode

CS - Sampling capacitor

NP - Normal power

LP - Low power

ULP - Ultra low power

ACK – I²C Acknowledge condition

NACK – I²C Not Acknowledge condition

1 Introduction

1.1 ProxFusion™

The ProxFusion™ sensor series provides all of the proven ProxSense® engine capabilities with additional sensors types. A combined sensor solution is available within a single platform.

1.2 Packaging and Pin-Out

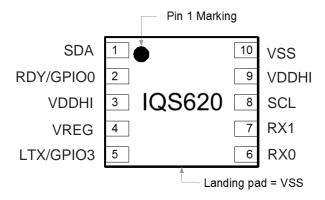


Figure 1.1 IQS620 pin-out (DFN10 package; device markings may differ)

Table 1.1 Pin-out description

		IQS62	0 in DFN10				
Pin	Name	Туре	Function				
1	SDA	Digital input / output	SDA (I ² C Data signal)				
2	GPIO0 / RDY	Configurable digital output Open drain active low logic	SAR activation output (higher priority) RDY (I ² C Ready interrupt signal; lower priority)				
3	VDDHI	Supply input	Supply: 1.8V – 3.3V				
4	VREG	Regulator output	Regulates the system's internal voltage Requires external capacitors to ground				
5	GPIO3 / LTX	Configurable digital output PWM output / Transmitter electrode	PWM signal output (higher priority) / Connect to inductive sensor's transmitting coil (lower priority)				
6	RX0	Receiving electrode	Connect to conductive area intended for sensor receiving				
7	RX1	Receiving electrode	Connect to conductive area intended for sensor receiving				
8	SCL	Digital input / output	SCL (I ² C Clock signal)				
9	VDDHI	Supply input	Supply: 1.8V – 3.3V				
10	VSS	Signal GND	Common ground reference				

1.3 Reference schematic

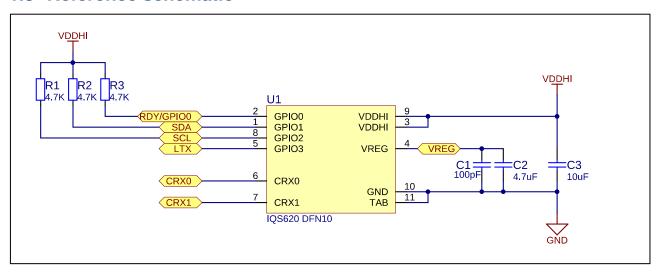


Figure 1.2 IQS620 reference schematic

1.4 Sensor channel combinations

The table below summarizes the IQS620's sensor and channel associations.

	Sensor / UI type	CH0	CH1	CH2	СНЗ	CH4	CH5
itive	Self capacitive	0	0	0			
Capacitive	SAR UI self	• Main	• Movement	0			
Hall-effect	Hall-effect switch UI					• Positive	• Negative
Inductive	Mutual inductive	0	0	•			
Temperature	Temperature trip and sensing				•		

Table 1.2 Sensor - channel allocation

Key:

- O Optional implementation
- Fixed use for UI

without any warranty and are subject to change without notice.

Capacitive sensing

2.1 Introduction to ProxSense®

Building on the previous successes from the ProxSense® range of capacitive sensors, the same fundamental sensor engine have been implemented in the ProxFusion™ series.

The capacitive sensing capabilities of the IQS620 include:

- Self-capacitive sensing.
- Maximum of 3 capacitive channels to be individually configured.
 - Prox and touch adjustable thresholds
 - Individual sensitivity setups
 - Alternative ATI modes
- Enhanced SAR user interface:
 - For passing the SAR qualification
 - Movement sensing to distinguish between stationary in-contact objects and human
 - Quick release detection feature (fully configurable)
 - o GPIO output of SAR activation (on pin2: GPIO0) for MCU interrupt capability
- Discreet button UI:
 - o Fully configurable 2 level threshold setup Traditional Prox & Touch activation levels.
 - Customizable filter halt time

2.2 Channel specifications

The IQS620 provides a maximum of 3 channels available to be configured for capacitive sensing. Each channel can be setup separately according to the channel's associated settings registers.

There are two distinct capacitive user interfaces available to be used.

- a) Self capacitive proximity/touch UI (always enabled)
- b) SAR UI

When the SAR UI is activated (ProxFusion Settings4: bit7):

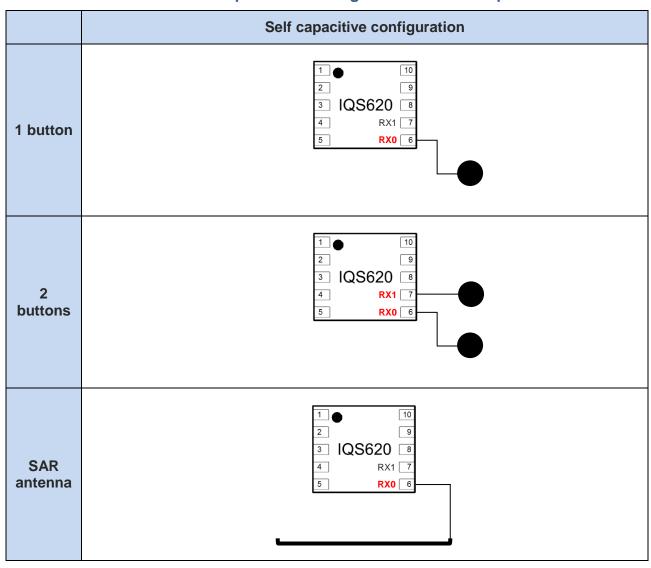
- Channel 0 is used for as the main capacitive sensing channel for SAR detection.
- Channel 1 is used for capacitive movement detection. This is used to improve the SAR detection such as quick release detection.

Table 2.1 Capacitive sensing - channel allocation

Mode	СН0	CH1	CH2	СНЗ	CH4	CH5
Self capacitive	0	0	0			
SAR UI self	• Main	• Movement	0			

Key:

- O Optional implementation
- Fixed use for UI



2.3 Hardware configuration

In the table below are multiple options of configuring sensing (Rx) electrodes to realize different implementations (combinations not shown).

Table 2.2 Capacitive sensing - hardware description

2.4 Software configuration

To be completed.

2.5 Sensor data output and flags

The following registers should be monitored by the master to detect capacitive sensor output and SAR activations.

a) The Global events register (0x11) will show the IQS620's main events. Bit0 is dedicated to the ProxSense activations and two other bits (bit7 & bit1) is provided to show the state of the SAR UI. SAR_ACTIVE (bit7) will be constantly active during SAR detection. SAR event (bit1) will toggle upon each SAR qualified event or change of SAR status.

	Global Events (0x11)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R	R	R	R	R	R	R	R				
Name	SAR ACTIVE	PMU EVENT	SYS EVENT	TEMP EVENT	METAL DETECT	HALL EVENT	SAR EVENT	PROX SENSE EVENT				

- b) The **ProxFusion UI flags (0x12)** and **SAR UI flags (0x13)** provide more detail regarding the outputs. A prox and touch output bit for each channel 0 to 3 is provided in the ProxFusion UI flags register.
- c) The **SAR UI Flags (0x13)** register will show detail regarding the state of the SAR output as well as Quick release toggles, movement activations and the state of the filter (halted or not).

	ProxFusion UI flags (0x12)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	R	R	R	-	R	R	R				
Name	-	CH2_T	CH1_T	CH0_T	-	CH2_P	CH1_P	CH0_P				
			SAR	UI flags (0	0x13)							
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	-	-	R	-	R	R	R				
Name	-	-	-	SAR ACTIVE		QUICK RELEASE	MOVE- MENT	FHALT				

The SAR UI can also be used with the inductive sensing capabilities and is explained in section 4.Inductive sensing as well.

3 Hall-effect sensing

3.1 Introduction to Hall-effect sensing

The IQS620 has two internal Hall-effect sensing plates (on chip). No external sensing hardware is required for Hall-effect sensing.

The Hall-effect measurement is essentially a current measurement of the induced current through the Hall-effect-sensor plates produced by the magnetic field passing perpendicular through each plate.

Advanced digital signal processing are performed to provide sensible output data.

- Two threshold levels are provided (prox & touch).
- Hall-effect output is linearized by inverting signals.
- North/South field direction indication provided.
- Differential Hall-Effect sensing:
 - Removes common mode disturbances
 - North-South field indication

3.2 Channel specifications

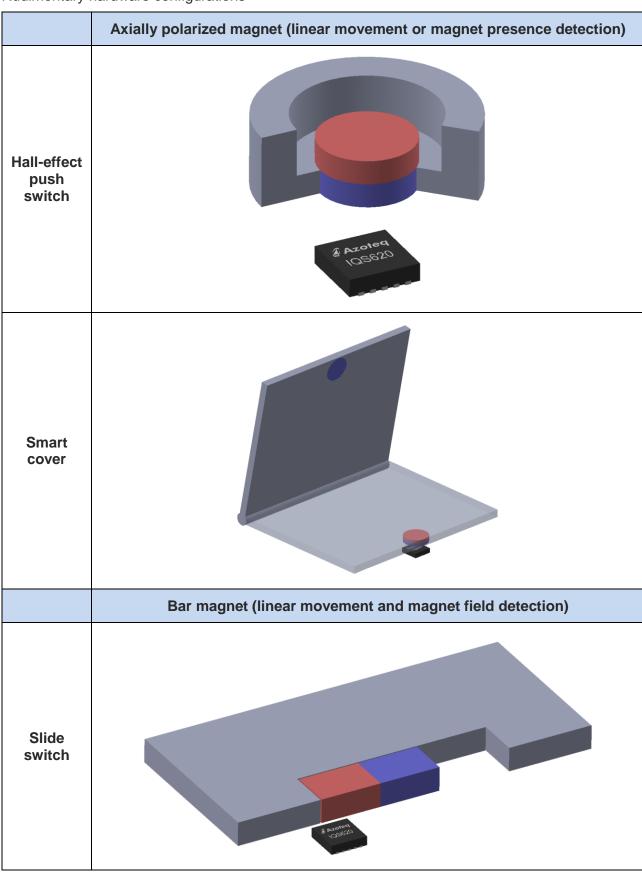
Channels 4 and 5 are dedicated to Hall-effect sensing. Channel 4 performs the positive direction measurements and channel 5 will handle all measurements in the negative direction. These two channels are used in conjunction to acquire differential Hall-effect data and will always be used as input data to the Hall-effect Ul's.

There are two distinct Hall-effect user interfaces available:

- a) General Hall-effect sensing
- b) Hall-effect switch UI

Table 3.1 Hall-effect sensor – channel allocation

Mode	СН0	CH1	CH2	СНЗ	CH4	CH5
Hall-effect switch UI						
Smart cover					• Positive	• Negative
Slide switch						


Key:

- O Optional implementation
- Fixed use for UI

3.3 Hardware configuration

Rudimentary hardware configurations

3.4 Software configuration

To be completed.

3.5 Sensor data output and flags

The following registers can be monitored by the master to detect Hall-effect related events.

a) Two bits in the **Global events (0x11)** register are dedicated to Hall-effect related output. **HALL_COVER_CLOSED (bit7)** will provide the status of a Hall-effect cover implementation (cover closed = 1 or cover open = 0). Bit2 will be toggled during any Hall-effect proximity detection.

	Global events (0x11)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R	R	R	R	R	R	R	R				
Name	SAR ACTIVE	PMU EVENT	SYS EVENT	TEMP EVENT	METAL DETECT EVENT	HALL EVENT	SAR EVENT	PROX SENSE EVENT				

b) The Hall-effect UI flags (0x16) register provides the standard two level activation output (prox = HALL_POUT & touch = HALL_TOUT) as well as a HALL_N/S bit to indicate the magnet polarity orientation.

	Hall-effect UI flags (0x16)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	-	-	-	-	R	R	R				
Name	-	-	1	-	-	HALL TOUT	HALL POUT	HALL N/S				

c) The **Hall-effect UI output (0x17 & 0x18)** registers provide a 16 bit value of the Hall-effect amplitude detected by the sensor.

	Hall-effect UI Output (0x17 - 0x18)											
Bit Number	7	7 6 5 4 3 2 1 0										
Data Access	R	R	R	R	R	R	R	R				
Name			Hall	effect UI c	utput low	byte						
Bit Number	15	14	13	12	11	10	9	8				
Data Access	R	R	R	R	R	R	R	R				
Name		Hall-effect UI output high byte										

4 Inductive sensing

4.1 Introduction to inductive sensing

The IQS620 provides inductive sensing capabilities in order to detect the presence of metal/metal-type objects. Prox and touch thresholds are widely adjustable and individual hysteresis settings are definable for each.

4.2 Channel specifications

The IQS620 requires 3 sensing pins for mutual inductive sensing. The metal detect UI will be executed using channel 2.

The mutual inductive user interface is available on channel 2.

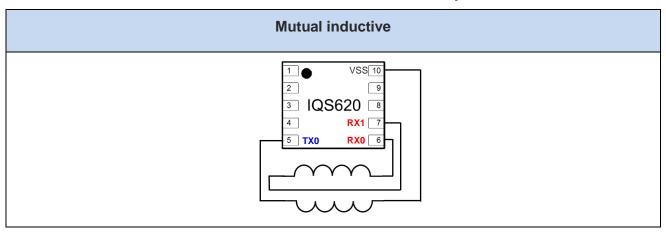
a) Metal detect UI (Dedicated to CH2)

Table 4.1 Inductive sensor – channel allocation

Mode	СН0	CH1	CH2	СНЗ	CH4	CH5
Mutual inductive	0	0	•			

Key:

- Optional implementation
- Fixed use for UI



4.3 Hardware configuration

Rudimentary hardware configurations (to be completed).

Table 4.2 Inductive hardware description

4.4 Software configuration

To be completed.

4.5 Sensor data output and flags

The following registers can be monitored by the master to detect inductive sensor related events.

a) Global events (0x11) to prompt for inductive sensor activation. Bit3 denoted as METAL_DETECT_EVENT will indicate the detection of a metal object using the inductive sensing.

	Global events (0x11)								
Bit Number	7	6	5	4	3	2	1	0	
Data Access	R	R	R	R	R	R	R	R	
Name	SAR ACTIVE	PMU EVENT	SYS EVENT	TEMP EVENT	METAL DETECT EVENT	HALL EVENT	SAR EVENT	PROX SENSE EVENT	

b) The **Metal detect UI flags (0x13)** register provides the classic prox/touch two level activation outputs as well as a bit to distinguish whether the current counts are above or below the LTA.

	Metal detect UI flags (0x13)									
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R	R	R	-	-	-	-	-		
Name	Signed output	TOUCH	PROX	-	-	-	-	-		

c) **Metal detect UI output (0x14 & 0x15)** registers will provide a combined 16-bit value to acquire the magnitude of the inductive sensed object.

	Metal detect UI output (0x14 - 0x15)									
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R	R	R	R	R	R	R	R		
Name		Metal detect UI output low byte								
Bit Number	15	14	13	12	11	10	9	8		
Data Access	R	R	R	R	R	R	R	R		
Name		Metal detect UI output high byte								

5 Temperature sensing

5.1 Introduction to temperature sensing

The IQS620 provides temperature sensing capabilities which can be used for temperature change monitoring or as an absolute temperature sensor (requires individual calibration). The use of the temperature sensor is primarily to reseed other sensor channels to account for sudden changes in environmental conditions.

The IQS620 uses a linearly proportional to absolute temperature sensor for temperature measurement. The temperature output is given by,

$$T = \frac{a}{b. CH_3} + c$$

Where *a*, *b* and *c* are constants that are calculated during calibration. Additionally, the channel setup must be calculated during testing.

5.2 Channel specifications

The IQS620 requires only external passive components to do temperature sensing (no additional circuitry/components required). The temperature UI will be executed using data from channel 3 if correctly setup for temperature sensing.

Table 5.1 Temperature sensor – channel allocation

Mode	СН0	CH1	CH2	СНЗ	CH4	CH5
Temperature trip and sensing				•		

Key:

- Optional implementation
- Fixed use for UI

5.3 Hardware configuration

No additional hardware required. Temperature sensing realized on-chip

5.4 Software configuration

To be completed.

5.5 Sensor data output and flags

The following registers can be monitored by the master to detect temperature sensor related events.

d) **Global events (0x11)** to prompt for temperature trip activation. Bit4 denoted as TEMP_EVENT will indicate the detection of a temperature event.

	Global events (0x11)									
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R	R	R	R	R	R	R	R		
Name	SAR ACTIVE	PMU EVENT	SYS EVENT	TEMP EVENT	METAL DETECT EVENT	HALL EVENT	SAR EVENT	PROX SENSE EVENT		

e) The **Temperature UI flags (0x19)** register provides a temperature trip activation output bit if the condition of a temperature reseed threshold is tripped.

	Temperature UI flags (0x19)								
Bit Number	7	6	5	4	3	2	1	0	
Data Access	R	-	-	-	-	-	-	-	
Name	Temp trip	-	-	-	ı	-	-	-	

f) **Temperature UI output (0x1A & 0x1B)** registers will provide a combined 16-bit value to provide the absolute temperature measured in units of Kelvin (K).

	Temperature UI output (0x1A – 0x1B)									
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R	R	R	R	R	R	R	R		
Name		Temperature output low byte								
Bit Number	15	14	13	12	11	10	9	8		
Data Access	R	R	R	R	R	R	R	R		
Name		Temperature output high byte								

ProxFusion™ Series

Device clock, power management and mode operation

6.1 Device main oscillator

The IQS620 has a **16MHz** main oscillator (default enabled) to clock all system functionality.

An option exists to reduce the main oscillator to 4MHz. This will result in all system timings, charge transfers and sample rates to be slower by half of the default implementations.

To set this option this:

- As a software setting Set the System Settings: bit4 = 1, via an I²C command.
- As a permanent setting Set the OTP option in FG Bank 0: bit2 = 1, using Azoteq USBProg program.

6.2 Device modes

The IQS620 supports the following modes of operation;

- **Normal mode** (Fixed report rate)
- **Low power mode** (Reduced report rate)
- **Ultra-low power mode** (Only channel 0 is sensed for a prox)
- Halt mode (Suspended/disabled)

Note: Auto modes must be disabled to enter or exit halt mode.

The device will automatically switch between the different operating modes by default. However this Auto mode feature may be disabled by setting the DSBL_AUTO_MODE bit (Power_mode_settings 0xD2: bit5) to confine device operation to a specific power mode. The POWER_MODE bits (Power mode settings 0xD2: bit4-3) can then be used to specify the desired mode of operation.

6.2.1 Normal mode

Normal mode is the fully active sensing mode to function at a fixed report rate specified in the Normal Mode report Rate (0xD3) register. This 8-bit value is adjustable from 0ms - 255ms in intervals of 1ms.

Note: The device's low power oscillator have an accuracy as specified in section 9.

6.2.2 Low power mode

Low power mode is a reduced sensing mode where all channels are sensed but at a reduced sample rate. The sample rate can be specified in the Low Power Mode report Rate (0xD4) register. The 8bit value is adjustable from 0ms - 255ms in intervals of 1ms. Reduced report rates also reduce the current consumed by the sensor.

Note: The device's low power oscillator have an accuracy as specified in section 9.

6.2.3 Ultra-low power mode

Ultra-low power mode is a reduced sensing mode where only channel 0 is sensed and no other channels or UI code are executed. Set the EN_ULP_MDE bit (Power_mode_settings: bit6) to enable use of the ultra-low power mode. The sample rate can be specified in the Low Power Mode report Rate (0xD5) register. The 8-bit value is adjustable from 0ms – 4sec in intervals of 16ms.

Wake up will occur on prox detection on channel 0.

6.2.4 Halt mode

Halt mode will suspend all sensing and will place the device in a dormant or sleep state. The device requires an I²C command from a master to explicitly change the power mode out of the halt state before any sensor functionality can continue.

6.2.5 Mode time

The mode time is specified in the Auto Mode Timer (0xD6) register. The 8-bit value is adjustable from 0ms – 2 min in intervals of 500ms.

6.3 Report rates

6.3.1 Calculation of each mode's report rate

Normal power segment rate

Tollies power oog. Tollies and	
To be completed.	
Auto modes change rates	
To be completed.	
Streaming/event mode rates	
To be completed.	

6.4 System reset

The IQS620 device monitor's system resets and events.

- a) Every device power-on and reset event will set the Show Reset bit (System flags 0x10: bit7) and the master should explicitly clear this bit by setting the ACK_RESET (bit6) in System Settings.
- b) The system events will also be indicated with the Global events register's SYS_EVENT bit (Global events 0x11: bit5) if any system event occur such as a reset. This event will continuously trigger until the reset has been acknowledged.

Communication

7.1 I²C module specification

The device supports a standard two wire I²C interface with the addition of an RDY (ready interrupt) line. The communications interface of the IQS620 supports the following:

- Streaming data as well as event mode.
- The master may address the device at any time. If the IQS620 is not in a communication window, the device will return an ACK after which clock stretching may be induced until a communication window is entered. Additional communication checks are included in the main loop in order to reduce the average clock stretching time.
- The provided interrupt line (RDY) is an open-drain active low implementation and indicates a communication window.

7.2 Device address and sub-addresses

The default device address is **0x44 = DEFAULT ADDR**.

Alternative sub-address options are definable in the following one-time programmable bits: OTP Bank0 (bit3; 0; bit1; bit0) = SUB_ADDR_0 to SUB_ADDR_7

a)	Default address:	0x44 = DEFAULT_ADDR OR SUB_ADDR_0
b)	Sub-address:	0x45 = DEFAULT_ADDR OR SUB_ADDR_1
c)	Sub-address:	0x46 = DEFAULT_ADDR OR SUB_ADDR_2
d)	Sub-address:	0x47 = DEFAULT_ADDR OR SUB_ADDR_3
e)	Sub-address:	0x4C = DEFAULT_ADDR OR SUB_ADDR_4
f)	Sub-address:	0x4D = DEFAULT_ADDR OR SUB_ADDR_5
g)	Sub-address:	0x4E = DEFAULT_ADDR OR SUB_ADDR_6
h)	Sub-address:	0x4F = DEFAULT_ADDR OR SUB_ADDR_7

7.3 Additional OTP options

All one-time-programmable device options are located in OTP bank0.

	OTP bank0									
Bit Number	7	6	5	4	3	2	1	0		
Name	Internal use	COMMS ATI	-	-	SUB ADDRESS (bit3)	4MHz		DRESS 1-0)		

Bit definitions:

- Bit 7: Internal use
 - Do not set. Leave bit cleared.
- Bit 6: : Communication mode during ATI
 - 0: No streaming events are generated during ATI
 - 1: Communication continue as setup regardless of ATI state.
- Bit 2: Main Clock frequency selection
 - o 0: Run FOSC at 16MHz
 - 1: Run FOSC at 4MHz
- Bit 3,1,0: I2C sub-address
 - o I2C address = 0x44 OR SUB_ADDR

7.4 Recommended communication and runtime flow diagram

The following is a basic master program flow diagram to communicate and handle the device. It addresses possible device events such as output events, ATI and system events (resets).

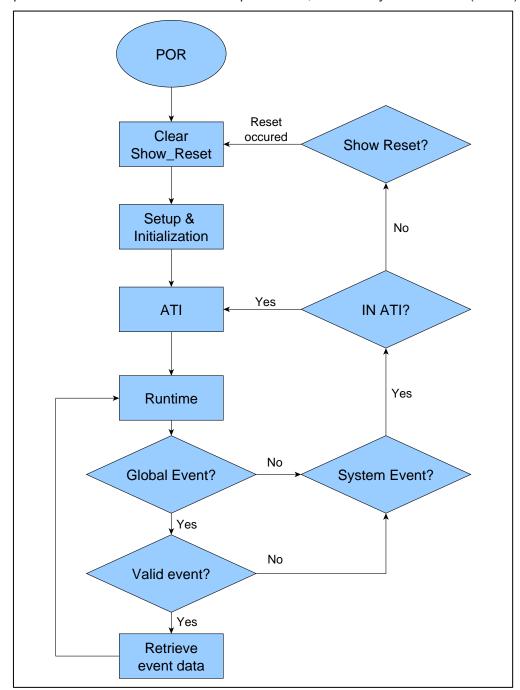


Figure 7.1 Master command structure and runtime event handling flow diagram

It is recommended that the master verifies the status of the System_Flags0 bits to identify events and resets. Detecting either one of these should prompt the master to the next steps of handling the IQS620.

Streaming mode communication is used for detail sensor evaluation during prototyping and/or development phases.

Event mode communication is recommended for runtime use of the IQS620. This reduce the communication on the I²C bus and report only triggered events.

without any warranty and are subject to change without notice.

8 Memory map

The full memory map is summarized below. Register groups are explained in the latter subsections.

Table 8.1 IQS620 Memory map index

Full Address	Group Name	Item Name	Data Access
0x00		Product number	Read-Only
0x01	Device information data	Software number	Read-Only
0x02		<u>Hardware number</u>	Read-Only
0x10		System flags	Read-Only
0x11		Global events	Read-Only
0x12		ProxFusion UI flags	Read-Only
0x13		SAR and metal UI flags	Read-Only
0x14		Metal detect UI output 0	Read-Only
0x15	Flags and user interface data	Metal detect UI output 1	Read-Only
0x16	riags and user interface data	<u>Hall-effect UI flags</u>	Read-Only
0x17		Hall-effect UI output 0	Read-Only
0x18		Hall-effect UI output 1	Read-Only
0x19		Temperature UI flags	Read-Only
0x1A		Temperature UI output 0	Read-Only
0x1B		Temperature UI output 1	Read-Only
0x20		Channel 0 counts low	Read-Only
0x21		Channel 0 counts high	Read-Only
0x22		Channel 1 counts low	Read-Only
0x23		Channel 1 counts high	Read-Only
0x24		Channel 2 counts low	Read-Only
0x25	Channel counts (raw data)	Channel 2 counts high	Read-Only
0x26	<u>Onarmor odanto (raw data)</u>	Channel 3 counts low	Read-Only
0x27		Channel 3 counts high	Read-Only
0x28		Channel 4 counts low	Read-Only
0x29	_	Channel 4 counts high	Read-Only
0x2A	_	Channel 5 counts low	Read-Only
0x2B		Channel 5 counts high	Read-Only
0x30 0x31		Channel 0 LTA bigh	Read-Only
0x31	_	Channel 0 LTA high	Read-Only
0x32 0x33	LTA values (filtered data)	Channel 1 LTA low Channel 1 LTA high	Read-Only Read-Only
0x34		Channel 2 LTA low	Read-Only
0x35	_	Channel 2 LTA high	Read-Only
0x40		ProxFusion settings 0 0	Read-Write
0x40	<u> </u>	ProxFusion settings 0_0	Read-Write
0x42	-	ProxFusion settings 0_2	Read-Write
0x42	_	ProxFusion settings 1 0	Read-Write
0x44	-	ProxFusion settings 1 1	Read-Write
0x45	ProxFusion sensor settings	ProxFusion settings 1 2	Read-Write
0x46	block 0	ProxFusion settings 2 0	Read-Write
0x47		ProxFusion settings 2 1	Read-Write
0x48		ProxFusion settings 2_2	Read-Write
0x49		ProxFusion settings 3_0	Read-Write
0x4A		ProxFusion settings 3_1	Read-Write
0x4B		ProxFusion settings 3_2	Read-Write

without any warranty and are subject to change without notice.

0x50		ProxFusion settings 4	Read-Write
0x51		ProxFusion settings 5	Read-Write
0x52		Compensation Ch0	Read-Write
0x53	ProxFusion sensor settings	Compensation Ch1	Read-Write
0x54	block 1	Compensation Ch2	Read-Write
0x55	<u>biodit i</u>	Multipliers Ch0	Read-Write
0x56		Multipliers Ch1	Read-Write
0x57		Multipliers Ch2	Read-Write
0x60		Prox threshold Ch0	Read-Write
0x61		Touch threshold Ch0	Read-Write
0x62		Prox threshold Ch1	Read-Write
0x63	ProxFusion UI settings	Touch threshold Ch1	Read-Write
0x64		Prox threshold Ch2	Read-Write
0x65		Touch threshold Ch2	Read-Write
0x66		ProxFusion discrete UI halt time	Read-Write
0x70		SAR UI settings 0	Read-Write
0x71		SAR UI settings 1	Read-Write
0x72	SAP III cottings	QRD threshold Ch0	Read-Write
0x73	SAR UI settings	Filter halt threshold Ch0	Read-Write
0x74		Prox threshold Ch0	Read-Write
0x75		Quick release detection halt time	Read-Write
0x80		Metal detect UI settings	Read-Write
0x81	Metal detect UI settings	Metal detect UI filter halt threshold	Read-Write
0x82	wetar detect or settings	Metal detect UI prox threshold	Read-Write
0x83		Metal detect UI touch threshold	Read-Write
0x90		Hall-effect settings 0	Read-Write
0x91	Hall-effect sensor settings	Hall-effect settings 1	Read-Write
0x92	<u>rian entect content cottingo</u>	Compensation Ch4 and Ch5	Read-Write
0x93		Multipliers Ch4 and Ch5	Read-Write
0xA0		Hall-effect switch UI settings	Read-Write
0xA1	Hall-effect switch UI settings	Hall-effect switch UI prox threshold	Read-Write
0xA2		Hall-effect switch UI touch threshold	Read-Write
0xC0		Temperature UI settings	Read-Write
0xC1	Temperature UI settings	Multipliers Ch3	Read-Write
0xC2		Temperature calibration data0	Read-Write
0xC3		Temperature calibration data1	Read-Write Read-Write
0xD0		System settings	
0xD1		Active channels	Read-Write
0xD2		Power mode settings	Read-Write
0xD3	Device and power mode	Normal mode report rate	Read-Write
0xD4	<u>settings</u>	Litro law power mode report rate	Read-Write
0xD5		<u>Ultra-low power mode report rate</u>	Read-Write
0xD6		Auto mode time	Read-Write
0xD7		Global event mask	Read-Write
0xD8		PWM control	Read-Write

8.2 Device Information Data

8.2.1 Product number

	Product number (0x00)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	R	R	R	R	R			
Name		Device Product Number									

Bit definitions:

• Bit 7-0: Device Product Number = D'65'

8.2.2 Software number

	Software number (0x01)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	R	R	R	R	R			
Name		Device Software Number									

Bit definitions:

• Bit 7-0: Device Software Number = D'04'

8.2.3 Hardware number

	Hardware number (0x02)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	R	R	R	R	R			
Name		Device Hardware Number									

Bit definitions:

Bit 7-0: Device Hardware Number = D'130'

8.3 Flags and user interface data

8.3.1 System flags

	System flags (0x10)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R	-	-	R	R	R	R	R				
Name	SHOW RESET	-	-	POWER	MODE	IN ATI	EVENT	NP SEG ACTIVE				

Bit definitions:

- Bit 7: Reset Indicator
 - o 0: No reset event
 - 1: A device reset has occurred and needs to be acknowledged.
- Bit 4-3: Active power-mode indicator
 - 00: Normal Mode
 - 01: Low Power Mode
 - 10: Ultra-Low Power Mode
 - 11: Halt Mode
- Bit 2: ATI busy indicator
 - 0: No channels are in ATI
 - 1: One or more channels are in ATI
- Bit 1: Global Event Indicator
 - 0: No new event to service
 - 1: An event has occurred and should be serviced
- Bit 0: Normal power segment indicator
 - 0: Not performing a normal power update
 - 1: Busy performing a normal power update

8.3.2 Global events

	Global events (0x11)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	R	R	R	R	R			
Name	SAR ACTIVE	PMU EVENT	SYS EVENT	TEMP EVENT	METAL DETECT	HALL EVENT	SAR EVENT	PROX SENSE EVENT			

Bit definitions:

- Bit 7: SAR activation state
 - o 0: SAR output inactive
 - 1: SAR output active
- Bit 6: Power management unit event flag
 - o 0: No event to report
 - 1: A power management event occurred

without any warranty and are subject to change without notice.

- Bit 5: System event flag
 - o 0: No event to report

- 1: A system event has occurred and should be handled
- Bit 4: Temperature event flag
 - 0: No event to report
 - 1: A temperature event has occurred and should be handled
- Bit 4: Metal detect event flag
 - o 0: No event to report
 - 1: A metal detect event has occurred and should be handled
- Bit 2: Hall-effect event flag
 - 0: No event to report
 - 1: A Hall-effect event has occurred and should be handled
- Bit 1: SAR event flag
 - o 0: No event to report
 - 1: A SAR event has occurred and should be handled
- Bit 0: ProxSense event flag
 - o 0: No event to report
 - 1: A capacitive key event has occurred and should be handled

8.3.3 ProxFusion UI flags

	ProxFusion UI flags (0x12)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	1	R	R	R	-	R	R	R			
Name	-	CH2_T	CH1_T	CH0_T	-	CH2_P	CH1_P	CH0_P			

Bit definitions:

- Bit 6: Ch2 touch indicator
 - o 0: Delta below touch level
 - 1: Delta above touch level
- Bit 5: Ch1 touch indicator
 - o 0: Delta below touch level
 - 1: Delta above touch level
- Bit 4: Ch0 touch indicator
 - 0: Delta below touch level
 - 1: Delta above touch level
- Bit 2: Ch2 proximity indicator
 - o 0: Delta below proximity level
 - 1: Delta above proximity level
- Bit 1: Ch1 proximity indicator
 - 0: Delta below proximity level
 - 1: Delta above proximity level
- Bit 0: Ch0 proximity indicator
 - o 0: Delta below proximity level
 - 1: Delta above proximity level

without any warranty and are subject to change without notice.

8.3.4 SAR UI flags

	SAR UI flags (0x13)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	-	-	-	R	-	R	R	R			
Name	-	-	-	SAR ACTIVE		QRD	MOVE- MENT	FHALT			

Bit definitions:

- Bit 4: SAR Standoff Active
 - 0: Delta below SAR threshold level
 - 1: Delta above SAR threshold level
- Bit 2: Quick Release Detection (QRD) indicator
 - 0: Quick release not detected
 - 1: Quick release detected
- Bit 1: Movement indicator
 - 0: Movement not detected
 - 1: Movement detected
- Bit 0: Filter Halt indicator
 - o 0: Delta below filter halt level
 - 1: Delta above filter halt level

8.3.5 Metal detect UI flags

	Metal detect UI flags (0x13)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	-	-	-	-	-			
Name	Signed output	TOUCH	PROX	-	-	-	-	-			

Bit definitions:

- Bit 7: Delta directional signed output
 - 0: Counts rise above the LTA
 - 1: Counts fall below the LTA
- Bit 6: Metal detect touch indicator
 - o 0: Delta below touch level
 - 1: Delta above touch level
- Bit 5: Metal detect proximity indicator
 - o 0: Delta below proximity level
 - 1: Delta above proximity level

8.3.6 Metal detect UI output

		Me	etal detect	UI output (0x14 - 0x1	5)				
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R	R	R	R	R	R	R	R		
Name		Metal Detect UI Output Low Byte								
Bit Number	15	14	13	12	11	10	9	8		
Data Access	R	R R R R R R								
Name		Metal Detect UI Output High Byte								

Bit definitions:

• Bit 15-0: Metal Detect UI output value

8.3.7 Hall-effect UI flags

	Hall-effect UI flags (0x16)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	-	-	-	-	-	R	R	R			
Name	-	-	-	-	-	TOUCH	PROX	HALL N/S			

Bit definitions:

- Bit 2: Hall-effect touch indicator
 - o 0: Field strength below touch level
 - 1: Field strength above touch level
- Bit 1: Hall-effect proximity indicator
 - o 0: Field strength below proximity level
 - 1: Field strength above proximity level
- Bit 0: Hall-effect North South Field indication
 - o 0: North field present
 - 1: South field present

8.3.8 Hall-effect UI output

		ŀ	Hall-effect	UI output (0x17/0x18)			
Bit Number	7	6	5	4	3	2	1	0	
Data Access	R	R	R	R	R	R	R	R	
Name			Hall	effect UI C	utput Low	Byte			
Bit Number	15	14	13	12	11	10	9	8	
Data Access	R	R R R R R R							
Name			Hall-	effect UI O	utput High	Byte			

without any warranty and are subject to change without notice.

Bit definitions:

- Bit 15-0: Hall-effect UI output
 - 0 8 000: Hall-effect UI output value

8.3.9 Temperature UI flags

	Temperature UI flags (0x19)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	-	-	-	-	-	-	-			
Name	Temp trip	-	-	-	-	-	-	-			

Bit definitions:

- Bit 7: Temperature trip indicator
 - o 0: No event to report
 - 1: Temperature reseed event occurred

8.3.10 Temperature UI output

	Temperature UI output (0x1A – 0x1B)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R	R R R R R R										
Name		Temperature output low byte										
Bit Number	15	14	13	12	11	10	9	8				
Data Access	R	R R R R R R										
Name	Temperature output high byte											

Bit definitions:

- Bit 15-0: Temperature UI output
 - O Integer value: Temperature output value in units of Kelvin (K)

8.4 Channel counts (raw data)

	Channel counts Ch0/1/2/3 (0x20/0x21 - 0x26/0x27)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R	R R R R R R										
Name		Channel Data Low Byte										
Bit Number	15	14	13	12	11	10	9	8				
Data Access	R	R R R R R R										
Name	Channel Data High Byte											

Bit definitions:

• Bit 0-15: AC filtered or raw value counts

	Channel counts Ch4/5 (0x28/0x29 - 0x2A/0x2B)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R	R R R R R R										
Name		Channel Data Low Byte										
Bit Number	15	14	13	12	11	10	9	8				
Data Access	R	R R R R R R										
Name	Channel Data High Byte											

Bit definitions:

• Bit 0-15: AC filtered or raw value counts of Hall-effect sensors channels

8.5 LTA values (filtered data)

	LTA Ch0/1/2 (0x30/0x31 - 0x34/0x35)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	R	R	R	R	R			
Name		LTA Low Byte									
Bit Number	15	14	13	12	11	10	9	8			
Data Access	R	R R R R R R									
Name	LTA High Byte										

Bit definitions:

• Bit 0-15: LTA filter value output

8.6 ProxFusion sensor settings block 0

8.6.1 ProxFusion settings 0

8.6.1.1 Capacitive sensing

	ProxFusion settings 0_0/1/2 (0x40-0x42)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R/W	R/W	-	-	-	-	R/W	R/W				
Name	Capacitive sensor mode		Internal use	Internal use		-	RX S	elect				
Fixed value	0	0			,	-						

Bit definitions:

• Bit 7-6: Sensor Mode

o 00: Capacitive sensing mode

• Bit 1-0: RX Select

o 00: RX 0 and RX is disabled

o 01: RX 0 is enabled

o 10: RX 1 is enabled

11: RX 0 and RX 1 is enabled

8.6.1.2 Inductive sensing

	ProxFusion settings 0_0/1/2 (0x40-0x42)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R/W	R/W	-	R/W	-	-	R/W	R/W				
Name	Inductive sensor mode		Internal use	Multiplier range	-		RX S	elect				
Fixed value	1	0				-	1	1				

Bit definitions:

Bit 7-6: Sensor Mode

o 10: Inductive sensor mode

Bit 4: Multiplier range

o 0: Small

o 1: Large

Bit 1-0: RX Select

o 11: RX 0 and RX 1 is enabled

8.6.2 ProxFusion settings 1

8.6.2.1 Capacitive sensing

	ProxFusion settings 1_0/1/2 (0x43 - 0x45)										
Bit Number											
Data Access		R/W	R/W	R/W	-	-	R/W	R/W			
Name	-	- CSz CHARGE FREQ - AUTO ATI MODE									

Bit definitions:

• Bit 6: CS size

o 0: CS capacitor size is 15 pF

o 1: CS capacitor size is 60 pF

• Bit 5-4: Charge frequency divider

00: 1/2

01: 1/4

0 10: 1/8

o 11: 1/16

Bit 1-0: Auto ATI Mode

o 00: ATI disabled

01: Partial ATI (all multipliers are fixed)

10: Semi-Partial ATI (only coarse multipliers are fixed)

o 11: Full-ATI

8.6.2.2 Inductive sensing

	ProxFusion settings 1_0/1/2 (0x43 - 0x45)										
Bit Number											
Data Access	-	R/W	R/W	R/W	-	-	R/W	R/W			
Name	-	CSz	CHARG	E FREQ		_	AUTO AT	TI MODE			

Bit definitions:

Bit 6: CS size

o 0: CS capacitor size is 15 pF

o 1: CS capacitor size is 60 pF

• Bit 5-4: Charge frequency divider

00: 1/2

01:1/4

0 10: 1/8

0 11: 1/16

Bit 1-0: Auto ATI Mode

o 00: ATI disabled

01: Partial ATI (all multipliers are fixed)

10: Semi-Partial ATI (only coarse multipliers are fixed)

without any warranty and are subject to change without notice.

o 11: Full-ATI

8.6.3 ProxFusion settings 2

8.6.3.1 Capacitive sensing

	ProxFusion settings 2_0/1/2 (0x46 - 0x48)										
Bit Number											
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	ATI_	ATI_BASE ATI_TARGET (x32)									

Bit definitions:

• Bit 7-6: Auto ATI base value

00: 7501: 10010: 15011: 200

Bit 5-0: Auto ATI Target

o ATI Target is 6-bit value x 32

8.6.3.2 Inductive sensing

	ProxFusion settings 2_0/1/2 (0x46 - 0x48)											
Bit Number	7	7 6 5 4 3 2 1 0										
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Name	ATI_BASE ATI_TARGET (x32)											

Bit definitions:

Bit 7-6: Auto ATI base value

00: 7501: 10010: 15011: 200

• Bit 5-0: Auto ATI Target

o ATI Target is 6-bit value x 32

8.6.4 ProxFusion settings 3

8.6.4.1 Capacitive sensing

	ProxFusion settings 3_0/1/2 (0x49 - 0x4B)											
Bit Number	7 6 5 4 3 2 1											
Data Access	R/W	R/W	R/W	-	R/W	R/W	R/W	-				
Name	UP_LE	ENGTH	CS DIV	Internal use	UP LEN EN	PASS_I	-					

Bit definitions:

- Bit 7-6: Up length select (requires **UP_LENGTH_EN = 1** for use)
 - o 00: Up length = 0010
 - o 01: Up length = 0110
 - o 10: Up length = 1010
 - o 11: Up length = 1110
- Bit 5: CS divider
 - o 0: Normal CS cap size
 - o 1: CS cap size 5 times smaller
- Bit 3: Up length select enable
 - o 0: Up length select is disabled
 - o 1: Up length select is enabled (value in bit 7-6 is used)
- Bit 2-1: Pass length select
 - o 00: Pass length = 001
 - o 01: Pass length = 011
 - o 10: Pass length = 101
 - o 11: Pass length = 111

8.6.4.2 Inductive sensing

ProxFusion settings 3_0/1/2 (0x49 - 0x4B)								
Bit Number	7	6	5	4	3	2	1	0
Data Access	-	-	R/W	-	R/W	-	-	-
Name	-		CS DIV	Internal use	UP LEN EN		-	

Bit definitions:

- Bit 5: CS divider
 - o 0: Normal CS cap size
 - o 1: CS cap size 3 times smaller

8.7 ProxFusion sensor settings block 1

8.7.1 ProxFusion settings 4

8.7.1.1 Capacitive sensing

	ProxFusion settings 4 (0x50)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Name	SAR EN	Internal use	TWO SIDED EN	ACF DISABLE	LTA BETA		ACF	BETA				

Bit definitions:

• Bit 7: SAR UI enable

o 0: SAR UI is disabled

o 1: SAR UI is enabled

• Bit 5: Two sided detection

0: Bidirectional detection disabled

1: Bidirectional detection enabled

• Bit 4: Disable AC filter

0: AC filter enabled

1: AC filter disabled

Bit 3-2: Long term average beta value

00: 7

01:8

0 10:9

0 11:10

• Bit 1-0: AC filter beta value

00:1

01:2

0 10:3

o 11: 4

8.7.1.2 Inductive sensing

	ProxFusion settings 4 (0x50)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Name	SAR EN	METAL DETECT EN	TWO SIDED EN	ACF DISABLE	LTA BETA		ACF	ВЕТА				

Bit definitions:

• Bit 7: SAR UI enable

o 0: SAR UI is disabled

o 1: SAR UI is enabled

Bit 6: Metal detection UI enable

without any warranty and are subject to change without notice.

- o 0: Metal detection UI is disabled
- 1: Metal detection UI is enabled
- Bit 5: Two sided detection
 - 0: Bidirectional detection disabled
 - o 1: Bidirectional detection enabled
- Bit 4: Disable AC filter
 - o 0: AC filter enabled
 - 1: AC filter disabled
- Bit 3-2: Long term average beta value
 - 00:7
 - 01:8
 - 0 10:9
 - o 11:10
- Bit 1-0: AC filter beta value
 - 00:1
 - o 01:2
 - 0 10:3
 - o 11:4

8.7.2 ProxFusion settings 5

	ProxFusion settings 5 (0x51)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	ı									
Name	Disable Ch1 auto		Internal use								

Bit definitions:

• Bit7: Disable Ch1 auto

o 0: Ch1 is enabled when SAR UI is active

o 1: Ch1 is disabled when SAR UI is active

• Bit 6-0: Internal use

8.7.3 Compensation

	Compensation Ch0/1/2 (0x52 - 0x54)										
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	Compensation (0-7)										

Bit definitions:

• Bit 7-0: Compensation (7-0)

o 0-255: Lower 8-bits of the Compensation value.

8.7.4 Multipliers

	Multipliers Ch0/1/2 (0x55-0x57)										
Bit Number											
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	Compens	ation (8-9)	Multiplie	er coarse	Multiplier fine						

Bit definitions:

• Bit 7-6: Compensation (8-9)

o 0-3: Upper 2-bits of the Compensation value.

Bit 5-4: Multiplier coarse

o 0-3: Coarse multiplier selection

Bit 3-0: Multiplier fine

o 0-15: Fine multiplier selection

8.8 ProxFusion UI settings

8.8.1 Prox threshold Ch0/1/2

	Prox threshold Ch0/1/2 (0x60/0x62/0x64)										
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	Proximity threshold value										

Bit definitions:

• Bit 7-0: Proximity threshold = Proximity threshold value

8.8.2 Touch threshold Ch0/1/2

	Touch threshold Ch0/1/2 (0x61/0x63/0x65)										
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W R/W									
Name	Touch threshold value										

Bit definitions:

• Bit 7-0: Touch threshold = Touch threshold value * LTA/ 256

8.8.3 ProxFusion discrete UI halt time

	ProxFusion discrete UI halt time (0x66)											
Bit Number	7	7 6 5 4 3 2 1 0										
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Name	Halt Time											

Bit definitions:

• Bit 7-0: Halt time in 500ms increments (decimal value x 500ms)

8.9 SAR UI settings

8.9.1 SAR UI settings 0

	SAR UI settings 0 (0x70)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	1	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	ı		QRD Beta		SAR To GPIO0	Mo	vement Be	eta			

Bit definitions:

- Bit 6-4: Quick Release Detection Beta
 - 0-7: quick release filter beta value
- Bit 3: SAR Standoff State To GPIO0
 - o 0: SAR standoff state to GPIO0 not active. RDY on GPIO0
 - 1: SAR standoff state to GPIO0 active. No RDY signal
- Bit 2-0: Movement Detection Filter Beta
 - 0-7: Movement filter beta value

8.9.2 SAR UI settings 1

	SAR UI settings 1 (0x71)										
Bit Number											
Data Access	R/W R/W R/W R/W R/W R/W R/W R/W										
Name	LT	A Halt time	out in no P	rox	Mov	ement dete	ction Thres	shold			

Bit definitions:

- Bit 7-4: LTA Halt timeout in no Prox
 - o 0-15: LTA Halt timeout in no Prox in 500 ms ticks
- Bit 3-0: Movement Detection Threshold
 - 0-15: Movement Threshold = Movement Threshold Value

without any warranty and are subject to change without notice.

8.9.3 Quick release detection threshold

	Quick release detection threshold (0x72)										
Bit Number	7 6 5 4 3 2 1 0										
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W									
Name	QRD Threshold value										

Bit definitions:

• Bit 7-0: Proximity Threshold = Proximity Threshold Value

8.9.4 Filter halt threshold

	Filter halt threshold (0x73)										
Bit Number	7 6 5 4 3 2 1 0										
Data Access	R/W	R/W R/W									
Name	Filter Halt Threshold value										

Bit definitions:

Bit 7-0: Filter Halt Threshold = Filter Halt Threshold Value

8.9.5 Proximity threshold

	Proximity threshold (0x74)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name		Proximity Threshold value									

Bit definitions:

• Bit 7-0: Proximity Threshold = Proximity Threshold Value

8.9.6 Quick release detection halt time

	Quick release detection halt time (0x75)										
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R/W	R/W R/W									
Name	LTA halt timeout after a QRD (decimal value x 500ms)										

Bit definitions:

 Bit 7-0: LTA halt timeout after a Quick release detection with no movement afterwards (decimal value x 500 ms)

8.10 Metal detection UI settings

8.10.1 Metal detect UI settings

	Metal detect UI settings (0x80)										
Bit Number 7 6 5 4 3 2 1 0											
Data Access	-	-	R/W	R/W	-	-	R/W	R/W			
Name	-	-	Hyster	esis T	-	-	Hyster	esis P			

Bit definitions:

• Bit 5-4: Touch hysteresis

o 00: Disabled

o 01: 1/4 of threshold

o 10: 1/8 of threshold

o 11: 1/16 of threshold

• Bit 1-0: Proximity hysteresis

o 00: Disabled

o 01: 1/4 of threshold

o 10: 1/8 of threshold

o 11: 1/16 of threshold

8.10.2 Metal detect UI filter halt threshold

Metal detect UI filter halt threshold (0x81)											
Bit Number											
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W									
Name	Metal detect filter halt threshold value										

Bit definitions:

• Bit 7-0: Filter halt threshold = Filter halt threshold value

8.10.3 Metal detect UI proximity threshold

	Metal detect UI proximity threshold (0x82)									
Bit Number	7 6 5 4 3 2 1 0									
Data Access	R/W	R/W R/W								
Name	Proximity threshold value									

Bit definitions:

• Bit 7-0: Proximity threshold = Proximity threshold value

8.10.4 Metal detect UI touch threshold

	Metal detect UI touch threshold (0x83)										
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	Touch threshold value										

Bit definitions:

Bit 7-0: Touch threshold = Touch threshold value * 4

8.11 Hall-effect sensor settings

8.11.1 Hall-effect settings 0

Hall-effect settings 0 (0x90)											
Bit Number	Number 7 6 5 4 3 2 1 0										
Data Access			R/W	R/W	-	-	R/W	R/W			
Name	-	-	CHARGE FREQ		rese	rved	AUTO A	TI MODE			

Bit definitions:

• Bit 5-4: Charge frequency divider

00: 1/2
01: 1/4
10: 1/8
11: 1/16

• Bit 1-0: Auto ATI Mode

o 00: ATI disabled

01: Partial ATI (all multipliers are fixed)

10: Semi-Partial ATI (only coarse multipliers are fixed)

o 11: Full-ATI

8.11.2 Hall-effect settings 1

	Hall-effect settings 1 (0x91)									
Bit Number	per 7 6 5 4 3 2 1 0									
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Name	ATI_I	BASE			ATI_TAR	GET (x32)				

Bit definitions:

Bit 7-6: Auto ATI base value

00: 7501: 10010: 15011: 200

Bit 5-0: Auto ATI Target

o ATI Target is 6-bit value x 32

8.11.3 Compensation Ch4/5

	Compensation Ch4/5 (0x92)									
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W R/W								
Name	Compensation (7-0)									

without any warranty and are subject to change without notice.

Bit definitions:

• Bit 7-0: Compensation (7-0)

7-0: Lower 8-bits of the Compensation value.

8.11.4 Multipliers Ch4/5

	Multipliers Ch4/5 (0x93)										
Bit Number	7 6 5 4 3 2 1 0										
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	Compens	ation (9-8)	Multiplie	rs coarse		Multipli	ers fine				

- Bit 7-6: Compensation (9-8)
 - o 0-3: Upper 2-bits of the Compensation value.
- Bit 5-4: Multipliers coarse
 - o 0-3: Coarse multiplier selection
- Bit 3-0: Multipliers fine
 - o 0-15: Fine multiplier selection

8.12 Hall-effect switch UI settings

8.12.1 Hall-effect switch UI settings

	Hall-effect switch UI settings (0xA0)										
Bit Number											
Data Access	-	R/W	R/W	R/W	-	R/W	R/W	R/W			
Name	-	Lin Mode	Hyster	esis T	-	Swap Dir	Hyster	esis P			

Bit definitions:

Bit 6: Linearize Output

o 0: Disabled

1: Enabled

Bit 5-4: Touch Hysteresis

o 00: Disabled

01: 1/4 of threshold

10: 1/8 of threshold

11: 1/16 of threshold

Bit 2: Swap field direction indication

o 0: Disabled

o 1: Enabled

Bit 1-0: Proximity Hysteresis

o 00: Disabled

o 01: 1/4 of threshold

10: 1/8 of threshold

11: 1/16 of threshold

8.12.2 Hall-effect switch UI proximity threshold

	Hall-effect switch UI proximity threshold (0xA1)										
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name		Proximity Threshold Value									

Bit definitions:

Bit 7-0: Proximity Threshold = Proximity Threshold Value

8.12.3 Hall-effect switch UI touch threshold

	Hall-effect switch UI touch threshold (0xA2)										
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W									
Name	Touch Threshold Value										

Bit definitions:

Bit 7-0: Touch Threshold = Touch Threshold Value * 4

8.13 Temperature UI settings

8.13.1 Temperature UI settings

	Temperature UI settings (0xC0)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	-	Reseed in prox	Reseed enable	Reseed threshold							

Bit definitions:

• Bit 6: Reseed in prox

0: Reseed will not occur during a prox

1: Reseed will occur during a prox

• Bit 5: Reseed enable

o 0: Disabled

o 1: Enabled

Bit 4-0: Reseed threshold

o 0 - 32: Reseed threshold = Reseed threshold value

8.13.2 Ch3 Multipliers

	Multipliers Ch3 (0xC1)										
Bit Number											
Data Access	ı	ı	R/W	R/W	R/W	R/W	R/W	R/W			
Name	-	-	Multiplie	r coarse		Multipl	lier fine				

Bit definitions:

Bit 5-4: Multiplier coarse

0-3: Coarse multiplier selection

Bit 3-0: Multiplier fine

o 0-15: Fine multiplier selection

8.13.3 Temperature calibration data

	Temperature calibration data0 (0xC2)										
Bit	7	6	5	4	3	2	1	0			
Number	,	O)	7	0	_		O			
Data		R/	١٨/			D	۸۸/				
Access		K/	VV		R/W						
Name	•	Temperatui	re multiplie	r		Temperat	ure divider				

Bit definitions:

• Bit 7-4: Temperature multiplier

○ 0 – 16: Temperature multiplier value

• Bit 3 – 0: Temperature divider

○ 0 – 16:Temeprature divider value

without any warranty and are subject to change without notice.

	Temperature calibration data1 (0xC3)										
Bit Number											
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name		Temperature offset									

- Bit 7-0: Temperature offset
 - 0 255: Temperature offset value

8.14 Device and power mode settings

8.14.1 System settings

	System settings (0xD0)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	W=1	W=1	R/W	R/W	R/W	R/W	W=1	W=1			
Name	SOFT RESET	ACK RESET	EVENT MODE	4MHz	COMMS ATI	ATI BAND	REDO ATI	RESEED			

Bit definitions:

- Bit 7: Software Reset (**Set only, will clear when done**)
 - 1: Causes the device to perform a WDT reset
- Bit 6: ACK Reset (**Set only, will clear when done**)
 - 1: Acknowledge that a reset has occurred. This event will trigger until acknowledged.
- Bit 5: Event mode enable
 - o 0: Event mode disabled. Default streaming mode communication.
 - 1: Event mode communication enabled.
- Bit 4: Main Clock frequency selection
 - o 0: Run FOSC at 16MHz
 - 1: Run FOSC at 4MHz
- Bit 3: Communications during ATI
 - 0: No communications are generated during ATI
 - 1: Communication continue as setup regardless of ATI state.
- Bit 2: Re-ATI Band selection
 - o 0: Re-ATI when outside 1/8 of ATI target
 - 1: Re-ATI when outside 1/16 of ATI target
- Bit 1: Redo ATI on all channels (Set only, will clear when done)
 - 1: Redo the ATI on all channels
- Bit 0: Reseed all Long-term filters (**Set only, will clear when done**)
 - 1: Reseed all channels

8.14.2 Active channels

	Active channels (0xD1)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	1	1	R/W	R/W	R/W	R/W	R/W	R/W			
Name	-	-	Ch5	Ch4	Ch3	Ch2	Ch1	Ch0			

- Bit 5: Ch5 (note: Ch4 and Ch5 must both be enabled for Hall-effect switch UI to be functional)
 - 0: Channel is enabled
 - 1: Channel is disabled
- Bit 4: Ch4 (note: Ch4 and Ch5 must both be enabled for Hall-effect switch UI to be functional)

IQ Switch® ProxFusion[™] Series

- 0: Channel is enabled
- 1: Channel is disabled
- Bit 3: Ch3
 - 0: Channel is enabled
 - 1: Channel is disabled
- Bit 2: Ch2 (note: Ch2 must be enabled for metal detect UI to be functional)
 - 0: Channel is enabled
 - 1: Channel is disabled
- Bit 1: Ch1 (note: Ch0 and Ch1 must both be enabled for SAR UI to be functional)
 - 0: Channel is disabled
 - 1: Channel is enabled
- Bit 0: Ch0 (note: Ch0 and Ch1 must both be enabled for SAR UI to be functional)
 - 0: Channel is disabled
 - 1: Channel is enabled

8.14.3 Power mode settings

	Power mode settings (0xD2)												
Bit Number	7	6	5	4	3	2	1	0					
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Name	PWM OUT	EN ULP MODE	DSBL AUTO MODE	POWER MODE NP SEG RATE			E						

- Bit 7: PWM output activation
 - o 0: PWM output inactive
 - 1: PWM output active
- Bit 6: : Allow auto ultra-low power mode switching
 - o 0: ULP is disabled during auto-mode switching
 - 1: ULP is enabled during auto-mode switching
- Bit 5: Disable auto mode switching
 - o 0: Auto mode switching is enabled
 - 1: Auto mode switching is disabled
- Bit 4-3: Manually select power mode (note: bit 5 must be set)
 - o 00: Normal Power mode. The device runs at the normal power rate, all enabled channels and UIs will execute.
 - 01: Low Power mode. The device runs at the low power rate, all enabled channels and UIs will execute.
 - 10: Ultra-Low Power mode. The device runs at the ultra-low power rate, Ch0 is run as wake-up channel. The other channels execute at the NP-segment rate.
 - 11: Halt Mode. No conversions are performed; the device must be removed from this mode using an I2C command.
- Bit 2-0: Normal power segment update rate
 - o 000: 1/2 ULP rate 001: 1/4 ULP rate

IQ Switch[®] ProxFusion[™] Series

010: 1/8 ULP rate
011: 1/16 ULP rate
100: 1/32 ULP rate
101: 1/64 ULP rate
110: 1/128 ULP rate
111: 1/256 ULP rate

8.14.4 Normal power mode report rate

	Normal power mode report rate (0xD3)										
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	Normal power mode report rate in ms										

Bit definitions:

• Bit 7-0: Normal mode report rate in ms (*note: LPOSC timer has +- 4 ms accuracy*)

8.14.5 Low power mode report rate

	Low power mode report rate (0xD4)										
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R/W	R/W R/W R/W R/W R/W R/W									
Name		Low power mode report rate in ms									

Bit definitions:

• Bit 7-0: Low-power mode report rate in ms (note: LPOSC timer has +- 4 ms accuracy)

8.14.6 Ultra-low power mode report rate

	Ultra-low power mode report rate (0xD5)										
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W									
Name	Ultra-low power mode report rate in 16 ms increments										

Bit definitions:

Bit 7-0: Ultra-low power mode report rate in 16 ms increments (decimal value x 16ms)

8.14.7 Auto mode timer

	Auto mode timer (0xD6)									
Bit Number	7 6 5 4 3 2 1 0									
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Name	Auto mode timer in 500 ms increments									

Bit definitions:

• Bit 7-0: Auto modes switching time in 500 ms increments (decimal value x 500ms)

8.14.8 Global event mask

	Global event mask (0xD7)								
N	Bit lumber	7	6	5	4	3	2	1	0
	Data ccess	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ı	Name	SAR ACTIVE	PMU EVENT	SYS EVENT	TEMP EVENT	METAL DETECT	HALL EVENT	SAR EVENT	PROX SENSE EVENT

Bit definitions:

- Bit 7: SAR activation state mask
 - 0: Event is allowed
 - 1: Event is masked
- Bit 6: Power management unit event mask
 - 0: Event is allowed
 - o 1: Event is masked
- Bit 5: System event mask
 - 0: Event is allowed
 - 1: Event is masked
- Bit 4: Temperature event mask
 - 0: Event is allowed
 - 1: Event is masked
- Bit 4: Metal detect event mask
 - 0: Event is allowed
 - 1: Event is masked
- Bit 2: Hall-effect event mask
 - o 0: Event is allowed
 - 1: Event is masked
- Bit 1: SAR event mask
 - 0: Event is allowed
 - 1: Event is masked
- Bit 0: ProxSense event mask
 - o 0: Event is allowed
 - 1: Event is masked

8.14.9 PWM duty cycle

	PWM duty cycle (0xD8)								
Bit Number	7	6	5	4	3	2	1	0	
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Name				PWM duty	cycle (%)				

Bit definitions:

- Bit 7-0: PWM duty cycle (%)
 - o 0-100: PWM duty cycle of the fixed 1kHz PWM output available on GPIO3

without any warranty and are subject to change without notice.

9 Electrical characteristics

9.1 Absolute Maximum Specifications

The following absolute maximum parameters are specified for the device:

Exceeding these maximum specifications may cause damage to the device.

Table 9.1 Absolute maximum specification

Parameter	Absolute maximum
Operating temperature	-40°C to 85°C
Supply Voltage (VDDHI – GND)	3.6V
Maximum pin voltage	VDDHI + 0.5V (may not exceed VDDHI max)
Maximum continuous current (for specific Pins)	10mA
Minimum pin voltage	GND - 0.5V
Minimum power-on slope	100V/s
ESD protection	±4kV (Human body model)

9.2 Power On-reset/Brown out

Table 9.2 Power on-reset and brown out detection specifications

DESCRIPTION	Conditions	PARAMETER	MIN	MAX	UNIT
Power On Reset	V _{DDHI} Slope ≥ 100V/s @25°C	POR	TBC	TBC	V
Brown Out Detect	V _{DDHI} Slope ≥ 100V/s @25°C	BOD	TBC	TBC	V

9.3 Digital input/output trigger levels

Table 9.3 Digital input/output trigger level specifications

DESCRIPTION	Conditions	PARAMETER	MIN	TYPICAL	MAX	UNIT
All digital inputs	VDD = 1.8V	Input low level voltage	TBC	TBC	TBC	V
All digital inputs	VDD = 1.8V	Input high level voltage	TBC	TBC	TBC	V
All digital inputs	VDD = 3.3V	Input low level voltage	TBC	TBC	TBC	V
All digital inputs	VDD = 3.3V	Input high level voltage	TBC	TBC	TBC	V

9.4 Current consumptions

9.4.1 Capacitive sensing alone

 Table 9.4
 Capacitive sensing current consumption

Power mode	Supply voltage	ATI target (counts)	Report rate (ms)	MIN	TYPICAL	MAX	UNIT
	VDD = 1.8V		10	ı	TBC	-	
NP mode			10	ı	26.42	-	
INP IIIOGE	VDD = 3.3V	512	20	ı	17.5	-	
			100	-	5.2	-	
LP mode	VDD = 1.8V			-	TBC	-	
LP IIIode	VDD = 3.3V			-	TBC	-	^
	VDD = 1.8V			-	TBC	-	μΑ
ULP mode			128	-	3.15	-	
OLF IIIOGE	VDD = 3.3V	512	240	-	3.05	-	
			800	-	TBC	-	
Halt made	VDD = 1.8V			-	TBC	-	
Halt mode	VDD = 3.3V			-	TBC	-	

9.4.2 Capacitive sensing with SAR UI active

Table 9.5 Capacitive sensing and SAR UI current consumption

Power mode	Supply voltage	ATI target (counts)	Report rate (ms)	MIN	TYPICAL	MAX	UNIT	
	VDD = 1.8V		10	-	TBC	-		
			10	-	27.8	-		
NP mode	VDD = 3.3V	512	20	-	18.03	ı		
	VDD = 3.3V	512	30	-	12.25	ı		
			100	-	5.35	ı		
LP mode	VDD = 1.8V			-	TBC	-		
LP mode	VDD = 3.3V			-	TBC	-	μΑ	
	VDD = 1.8V			-	TBC	-		
ULP mode		1-		128	-	3.15	-	
OLP mode	VDD = 3.3V	512	240	-	3.05	-		
			800	-	TBC	-		
Halt mode	VDD = 1.8V			-	TBC	-		
пан точе	VDD = 3.3V			-	TBC	-		

9.4.3 Hall-effect sensing alone

Table 9.6 Hall-effect current consumption

Power mode	Supply voltage	ATI target (counts)	Report rate	MIN	TYPICAL	MAX	UNIT
	VDD = 1.8V			-	TBC	-	
NP mode			10	-	64.13	-	
INF IIIode	VDD = 3.3V	512	20	-	40.51	-	
			100	-	10.02	-	
LP mode	VDD = 1.8V			-	TBC	-	
LP IIIode	VDD = 3.3V			-	TBC	-	
	VDD = 1.8V			-	TBC	-	μΑ
ULP mode			80	-	4.08	-	
OLF IIIOGE	VDD = 3.3V	512	400	-	3.03	-	
			800	-	2.32	-	
Halt mode	VDD = 1.8V				TBC	-	
Hail III00e	VDD = 3.3V			-	TBC	-	

9.4.4 Inductive sensing alone

Table 9.7 Inductive sensing current consumption

Power mode	Supply voltage	ATI target (counts)	Report rate	MIN	TYPICAL	MAX	UNIT
	VDD = 1.8V			-	TBC	-	
ND made			10	ı	47.47	-	
NP mode	VDD = 3.3V	3.3V 512	20	ı	30.27	-	
			100	-	7.88	-	
LP mode	VDD = 1.8V			-	TBC	-	
LP mode	VDD = 3.3V			-	TBC	-	μА
III D mode	VDD = 1.8V			-	TBC	-	
ULP mode	VDD = 3.3V			-	TBC	-	
Halt made	VDD = 1.8V			-	TBC	-	
Halt mode	VDD = 3.3V			-	TBC	-	

9.5 Capacitive loading limits

To be completed.

9.6 Hall-effect measurement limits

To be completed.

9.7 Inductive measurement limits

To be completed.

10 Package information

10.1 DFN10 package and footprint specifications

Table 10.1 DFN-10 Package dimensions (bottom)

Dimension	[mm]
Α	3 ±0.1
В	0.5
С	0.25
D	n/a
F	3 ±0.1
L	0.4
Р	2.4
Q	1.65

D Ø C

Figure 10.1 **DFN-10 Package dimensions** (bottom view). Note that the saddle needs to be connected to common GND on the PCB.

Table 10.2 DFN-10 Package dimensions (side)

Dimension	[mm]
G	0.05
Н	0.65
I	0.7-0.8

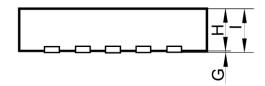


Figure 10.2 **DFN-10 Package dimensions** (side view)

Table 10.3 DFN-10 Landing dimensions

Dimension	[mm]
Α	2.4
В	1.65
С	8.0
D	0.5
E	0.3
F	3.2

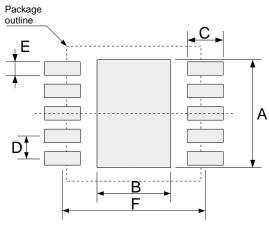
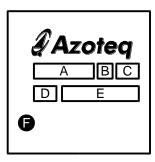
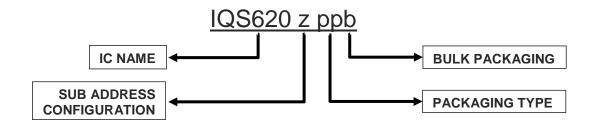



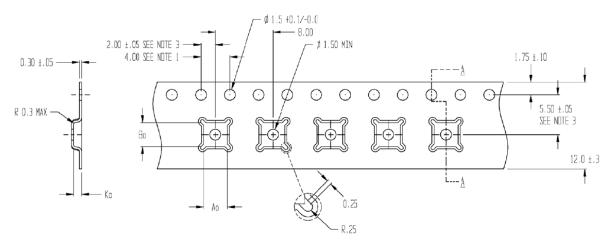
Figure 10.3 DFN-10 Landing pad dimensions (top view)

10.2 Device marking (subjected to change for production)


10.2.1 Top Marking

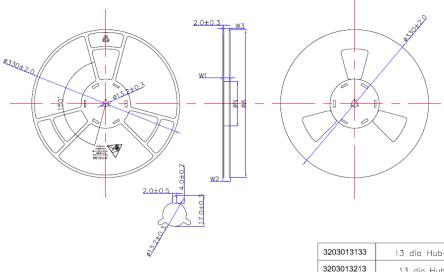
DEVICE NAME	Α	=	IQS620
REVISION	В	=	x (IC Revision Number)
TEMPERATURE RANGE	С	=	t (i = Industrial, -40°C to 85°C)
DATE CODE	D	=	P (Internal use)
	E	=	WWYY (Batch number)
PIN 1 MARKING	F	=	Dot to indicate pin 1

10.3 Ordering Information


Order quantities will be subject to multiples of a full reel. Contact the official distributor for sample quantities. A list of the distributors can be found under the "Distributors" section of www.azoteg.com.

IC NAME	IQS620	=	IQS620
CONFIGURATION	Z	=	Sub Address Configuration (hexadecimal) 0 = 44H 1 = 45H 2 = 46H 3 = 47H 4 = 4CH 5 = 4DH 6 = 4EH 7 = 4FH
PACKAGE TYPE	DN	=	DFN10 (3x3)
BULK PACKAGING	R	=	Reel DNF10 (3x3) – 3000pcs/reel

10.4 Tape and reel specification



SECTION A - A

A0=3.30 B0=3.30 K0=1.10

NOTES:

- 1、10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2
- 2. CAMBER IN COMPLIANCE WITH EIA 481
- 3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE

PRODUCT SPECIFICATIONS					
TYPE WIDTH	ØΑ	ØΝ	W1 _(Min)	W2(Max)	W3(Max)
12MM	330 ±2.0	100 ±1.0	12.4	18.4	15.4
16mm	330 ±2.0	100 ±1.0	16.4	22.4	19.4
24MM	330 ±2.0	100 ±1.0	24.4	30.4	27.4

3203013133	13 dia Hub4 12mm width PS B
3203013213	13 dia Hub4 16mm width PS B
3203013253	13 dia Hub4 24mm width PS B

10.5 MSL Level

Moisture Sensitivity Level (MSL) relates to the packaging and handling precautions for some semiconductors. The MSL is an electronic standard for the time period in which a moisture sensitive device can be exposed to ambient room conditions (approximately 30°C / 85%RH see J-STD033C for more info) before reflow occur.

Package	Level (duration)
DFN10	MSL 1 (Unlimited at ≤30°C / 85% RH)
	Reflow profile peak temperature < 260°C for < 30 seconds

11 Datasheet revisions

11.1 Revision history

v1.0 - First release version

11.2 Errata

Appendix A. Contact information

	USA	Asia	South Africa
Physical Address	6507 Jester Blvd Bldg 5, suite 510G Austin TX 78750 USA	Rm2125, Glittery City Shennan Rd Futian District Shenzhen, 518033 China	109 Main Street Paarl 7646 South Africa
Postal Address	6507 Jester Blvd Bldg 5, suite 510G Austin TX 78750 USA	Rm2125, Glittery City Shennan Rd Futian District Shenzhen, 518033 China	PO Box 3534 Paarl 7620 South Africa
Tel	+1 512 538 1995	+86 755 8303 5294 ext 808	+27 21 863 0033
Fax	+1 512 672 8442	CAL GOO	+27 21 863 1512
Email	info@azoteq.com	info@azoteq.com	info@azoteq.com

Please visit www.azoteq.com for a list of distributors and worldwide representation.

The following patents relate to the device or usage of the device: US 6,249,089; US 6,952,084; US 6,984,900; US 7,084,526; US 7,084,531; US 8,395,395; US 8,531,120; US 8,659,306; US 8,823,273; US 9,209,803; US 9,360,510; EP 2,351,220; EP 2,559,164; EP 2,656,189; HK 1,156,120; HK 1,157,080; SA 2001/2151; SA 2006/05363; SA 2014/01541; SA 2015/023634 IQ Switch®, SwipeSwitch™, ProxSense®, LightSense™, AirButton™, ProxFusion™, Crystal Driver™ and the

logo are trademarks of Azoteq.

The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an "as is" basis only, without any representations or warranties, express or implied, of any kind, including representations about the suitability of these products or information for any purpose. Values in the datasheet is subject to change without notice, please ensure to always use the latest version of this document. Application specific operating conditions should be taken into account during design and verified before mass production. Azoteq disclaims all warranties and conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by, without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Azoteq products are not authorized for use as critical components in life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estopped or otherwise, under any intellectual property rights. In the event that any of the abovementioned limitations or exclusions does not apply, it is agreed that Azoteq's total liab

www.azoteq.com/ip

info@azoteq.com

without any warranty and are subject to change without notice.